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A numerical investigation of free convection in a rectangular enclosure has been carried 
out based on Gosman's finite volume method with a 21 x 21 nonuniform grid. A radiation 
model has been included in the analysis to study the effect of surface radiation on the 
heat transfer characteristics of the enclosure. The model is general since it takes into 
account different emissivities for the side walls and for the top and bottom walls. The 
nonuniform grids for convection have been retained for radiation, notwithstanding the 
fact that the evaluation of view factors becomes highly tedious. The view factors are 
evaluated by Hottel's crossed-string method. Nonuniform grids for both convection and 
radiation routines ensure grid compatibility and yield convergent solutions. The model has 
thrown light onto the importance of surface radiation even at low emissivities and 
temperature levels and provides an explanation of the discrepancies between the experi- 
mental and theoretical correlations. A parametric study of surface radiation effects is also 
presented. 

Keywords:  radiation convection interaction; radiation N usselt number; convective drop; 
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1. I n t r o d u c t i o n  

The problem of free convection in enclosed spaces has been 
extensively studied because of its importance in many practical 
applications such as the design of solar collectors, energy 
efficient buildings, the cooling of electronic equipment, and a 
host of others. Although in most cases the flow is three- 
dimensional (3-D), two-dimensional (2-D) results are often 
satisfactory, especially considering the large reduction in com- 
putational effort. In most cases, there is an interaction of surface 
radiation and free convection, and in many of the analyses this 
interaction is omitted by "alleging" that once the emissivities 
chosen are low, then radiation can be neglected. In some cases, 
the radiation contribution has been taken care of by adding a 
"correction" using simple formulae like that between infinite 
parallel plates facing each other (Hoogendoorn 1985). The 
errors that arise because of the above approximations and 
highlighting of the "dual" nature of surface radiation, viz. 
interaction with free convection and vice versa, are the main 
thrusts of the present paper. A careful review of the literature 
suggests that the work of Asako and Nakamura (1982) is one 
of the very few earnest attempts to probe into the effect of 
surface radiation on free convection in an enclosure. However, 
they used a 10 x 10 uniform-size grid for both convection and 
radiation, and the heat transfer from the top wall was assumed 
to be equal to the heat transfer from the bottom wall. In t h e  
present work, a finer mesh has been used near the walls, with 
progressively coarser meshes towards the core (grid used: 
21 x 21). Also, more realistic boundary conditions for tem- 
perature have been used for the top and bottom walls. The 
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results we have obtained tend to explode the common myth 
that corrections could be made for the radiation heat transfer 
by adding the radiation with the simpler formulae. We also 
show that even at low emissivities, radiation plays a significant 
and "dual" role in that it brings down the convective compo- 
nent, even though the net heat transferred across the enclosure 
may be increased or decreased depending on the particular 
radiative parameters. 

2. Formulation of the problem 

The central theme of the present work is the study of the effect 
of surface radiation on free convection in a square cavity, 
however, to provide greater confidence in the present results, 
the pure convection code is validated first. The results are in 
excellent agreement with the previous workers (see Figure 3). 
Hence, for the sake of completeness, we present the governing 
equations along with the necessary boundary conditions for 
both the pure convection problem and the combined convec- 
tion and radiation problem. The governing equations for 
steady, laminar, constant property flow for a square cavity with 
end walls at different temperatures and top and bottom walls 
insulated assuming Boussinesq approximation to be valid (see 
Figure 1) are reported in a number of references (e.g., Bejan 
1984). The governing equations can be simplified using the 
stream function-vorticity formulation. The governing equations 
in normalized form are 

u - -  + V - -  = Pr[-V2WJ - Ra 
OX ~gY tgY 

V25 = - Pr W 

= - - + V - -  
c~x ? Y 

(1) 

(2) 

(3) 
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Figure 1 
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The boundary conditions are 

X = 0, 2, for all Y ~k = 0 (4a) 

Y = 0, 2, for all X ~k = 0 (4b) 

Y = 0, for all X q~ = 1 (4c) 

Y = 2, for all X q~ = 0 (4d) 

X = 0, 2, for all Y c~q~ = 0, for the pure convection problem 
dX 

(4e) 

X = 0, 2, for all Y c~___~ = NRcqR/trT~ ' for the combined 
dX 
convection and radiation problem (4f) 

3. R a d i o s i t y  f o r m u l a t i o n  

For the radiosity formulation, the nonuniform grids used for 
convection have been retained to ensure grid compatibility. The 
non-dimensional radiosity equation for the ith of the 80 ele- 
ments (for a 21 x 21 grid, there are 20 elements on each 
wall) on the wall is given by 

8 0  

J i = e i + ( 1 - - e ~ )  ~ Fqj j ,  i =  1 to 80 (5) 
j = l  

where F~ is the view factor from the ith to the jth element. 
Since there are three equations for three variables--vorticity, 

stream function, and temperature--and the respective equa- 
tions are elliptic, we need four additional boundary conditions 
on vorticity to close the problem. To generate these boundary 
conditions, we start with the assumption that the stream 
function equation is satisfied at the walls. Then an assumption 
is made that gradients parallel to the wall are negligible in 
comparison with those perpendicular to the wall. In this 
manner four additional boundary conditions are generated. In 
the present study, in view of the nonuniform grid employed, 
Lagrangian polynomials have been used to obtain three point 
formulae for wall vorticity conditions. 

The above boundary-condition generation for vorticity gives 
a clear indication of the tediousness associated with the vorti- 
city method when encountering complicated geometries like 
the presence of multiple partition plates. Notwithstanding the 
fact that the vorticity method offers very unique features, such 
as elimination of the troublesome pressure terms and the 
physical significance of vorticity in a recirculating flow like this, 
the complications in generating boundary conditions each time 
a wall or a free boundary (e.g., an opening) is encountered 
does place this method at a definite disadvantage vis-a-vis 
the primitive variable method, particularly for complicated 
geometries. 

N o t a t i o n  

a 

b 

d 
0 
Gr 
H 
J 
J 
k 
N~c 

N u f  
Nuf 
Nu R 
NUR 

Nuo 
Pr 
qR 
Ra 
T 
L 

Constant in the Nusselt number correlation 
Exponent of Grashof number in the Nusselt number 
correlation 
Spacing, m 
Acceleration due to gravity, m/s 2 
Grashof number based on d, g fl(T h - Tc)d3/v 2 
Height of the enclosure, m 
Nondimensional radiosity, J/a T~ 
Radiosity, W/m z 
Thermal conductivity of fluid, W/m K 
Radiation conduction interaction parameter, 
t rT~d/[k(r  h -- T~)] 
Local Nusselt number, -(aq~/a Y)y=o 
Average or mean Nusselt number, S~ Nuf dX/2 
Radiation Nusselt number, (q~d)/[k(Th - T¢)] 
Average or mean radiation Nusselt number, 
So 2 NuR dX/2 
Overall Nusselt number, Nuf (with radiation) + Nu~ 
Prandtl number, v/ct 
Radiative heat flux, [e/(1 - e)][trT* -- J], W/m 2 
Rayleigh number based on d, Gr Pr 
Temperature at any location (X, Y), K 
Temperature ratio, TdTh 

u Vertical velocity, m/s 
U Nondimensional vertical velocity, ud/ct 
v Horizontal or cross velocity, m/s 
V Nondimensional horizontal velocity, vd/a 
W Nondimensional vorticity, cod2/v 
x Vertical distance, m 
X Nondimensional vertical distance, 2x/d 
y Horizontal distance, m 
Y Nondimensional horizontal distance, 2y/d 

Greek 

fl 
8 

V 

¢,, 
O) 

symbols 

Thermal diffusivity, m2/s 
Thermal expansion coefficient, 1/K 
Emissivity 
Kinematic viscosity, m2/s 
Dimensionless temperature, ( T -  Tc)/(T h -- Tc) 
Dimensionless stream function, ~k'/~ 
Stream function, m2/s 
Vorticity, 1/s 

Subscripts 

h Hot wall 
c Cold wall 
t Top wall 
b Bottom wall 
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4. M e t h o d  of  so lut ion  

4.1. Pure convection problem 

Based on  the Gosman  et al (1969) f in i te -vo lume method,  a code 
has been developed for solving the nondimensional equations. 
Suitable nondimensionalization shows that the number of 
input parameters to be specified is reduced to two, namely, the 
Rayleigh number and the Prandtl number. From our computa- 
tion we have observed that Prandtl number is not a significant 
parameter, at least in the range of Prandtl numbers (0.2-20) 
covered in the present study (see Shembarkar et al. 1977). An 
important feature of the solution procedure is the use of 
upwinding while handling convection terms. The use of up- 
winding ensures that convection coefficients in the algorithm 
are always posit ive--at  the worst zero, but never negative--  
thus ensuring convergent solutions. 

A 21 x 21 nonuniform grid has been generated using a cosine 
function. The use of a cosine function gives very fine grids near 
the walls and progressively coarser grids towards the core. The 
grid pattern of the left bottom quadrant of the enclosure is 
shown in Figure 2. As regards the implementation of the 
derivative boundary conditions, three-point formulae using a 
Lagrangian polynomial of degree 2 have been used. This 
procedure, coupled with a very fine grid near the walls, makes 
the derivative boundary conditions on the wall less prone to 
error. 

For all the equations, underrelaxation has been used. Initial 
trial runs have shown that the use of a relaxation parameter 
greater than one leads to divergence. A relaxation parameter 
of 0.5 has been found to give convergent results for a wide 
range of aspect ratios and Rayleigh numbers in the present 
study, and hence has been used throughout. It is noted in 
passing that a relaxation parameter of 0.5 corresponds to the 
Crank-Nicholson method in finite differences, which is a 
balanced implicit-explicit method. 

A convergence criterion of 0.01 percent has been used for 
Ra = 1,000. This is more stringent than the value of 0.1 percent 
recommended by De Vahl Davis and Jones (1983). As with any 
numerical method, the accuracy of the solution reduces with 
Ra. In the present study, the maximum error at Ra = 106 has 
been found to be 0.8 percent for the temperature, with the 
number of iterations limited to 600. 
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Grid pattern of the left bottom quadrant of the enclosure 

After the velocity and temperature distributions are ob- 
tained, the local Nusselt numbers are found by using the 
Lagrangian polynomial of second degree, and the mean Nusselt 
numbers have been evaluated using numerical integration with 
an extended trapezoidal rule for nonuniform step sizes. 

4.2. Combined convection and radiation problem 

The solution procedure for the combined problem is the same 
as that for a pure convection problem, but with the necessary 
modifications on the boundary conditions for the top and 
bottom walls. These boundary conditions are nonlinear in 
temperature, aside from the fact that the radiosities themselves 
are functions of temperature. The radiosities are obtained by 
solving the radiosity equations for an enclosure as reported in 
Hottel and Sarofim (1967). The view factors have been evalu- 
ated using Hottel's crossed-string method. The nonlinear 
boundary conditions on the adiabatic top and bottom walls 
are solved for using an explicit finite-difference technique. The 
radiosity equations have been solved by the Gaussian elimina- 
tion technique, which is a direct solver. Once the boundary 
conditions are established, the next iteration for the convection 
equations is performed, then the whole process is repeated until 
the required convergence is obtained. 

Calculations have been performed for the typical ranges of 
the various parameters that enter the problem, as shown in 
Table 1. A specific case of Ra = 50,000 has been chosen for the 
detailed study of the effects of other parameters on the heat 
transfer characteristics of the enclosure. 

5. Results and discussion 

5. I. Comparison for the pure convection case 

For the case of a square cavity, a plethora of results are quoted 
in the literature. A comparison of the existing correlations 
along with the data spread of the present work is given in 
Figure 3. The average Nusselt number is usually correlated by 
a formula of the form Nuf  = a Gr b for air. It is appropriate to 
mention here that the Grashof number has been used in order 
to facilitate comparison with other workers. Also, we would 
like to reiterate that in the Prandtl number range covered, the 
Prandtl number does not play a significant role, i.e., different 
fluids will give the same Nusselt number for a given Rayleigh 
number (for the present study, 0.2 < Pr < 20). Table 2 shows 
the values of a and b pertaining to the studies indicated in 
Figure 3. The correlations of Newell and Schmidt (1970) and 
Han (1967) report excessively large values of the Grashof 
number exponent b~) .397 and 0.359, respectively--in their 
Nusselt number correlations, as is clear from the steep slopes 
of these correlations in Figure 3. Landis and Rubel (1970) noted 
this and attributed it to the use of uniform grids in the 
calculations. Specifically, at large Rayleigh numbers, uniform 
grids are prone to excessive errors as the boundary layer 

Table  1 Typical ranges of parameters for the combined 
convection and radiation problem 

Parameter Range 

Prandtl number 
Rayleigh number 
Emissivity (side walls) 
Radiation conduction interaction 

parameter 
Temperature ratio 

0.2 < Pr < 20 
500 < Ra < 106 
0.1 < eh = ~c < 0.95 
0.5 < NRC < 5 

0.7 < T r < 0.98 
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Figure 3 Comparison of the existing Nusselt number correlations 
for air along with the present data 

becomes more and more slender and convergent solutions with 
high accuracies are not obtainable. In fact Berkovsky and 
Polevikov (1977) used a fourth-order-accurate scheme precisely 
for this reason and obtained a Grashof number exponent b of 
0.29. Thus it may be concluded that the present results, which 
are in excellent agreement with those of Berkovsky and Pole- 
vikov (1977)--who are reported by Gebhart  et al. (1988) to 
have the most accurate correlat ion--are a clear indication of 
the soundness of the convection code, and the incorporation 
of surface radiation in the code is expectedly fairly accurate. 

On the experimental side, the widely quoted correlation of 
Eckert and Carlson (1961) runs well below all the other 
correlations, although the Grashof number exponent in their 
work (0.30) is in good agreement with that of the present work 
(0.305) and that of Berkovsky and Polevikov (0.29). An attempt 
to explain the discrepancies between the experimental and 
numerical predictions will be made in section 5.8 below. We 
would like to mention here that in Eckert and Carlson's work, 
the experiments were performed over a few representative 
values of height-to-width ratio. But Eckert and Carlson have 
proposed two correlations for the Nusselt number, one contain- 
ing the height-to-width ratio, and the other without it. We have 
used their second correlation for purposes of comparison. 
However, extrapolation of their results to aspect ratios (height 
to width) for which experiments have not yet been performed 
may be questionable. 

Table 2 Values of a and b from studies indicated in 
Figure 3 (Nu'---f = a Gr b) 

Source a b 

Eckert & Carlson 0.119 0.30 
Hart 0.0782 0.359 
Newell & Schmidt 0.0547 0.397 
Berkovsky & Polevikov 0.15 0.29 
Present work 0.13 0.305 

5.2. The ef fect  o f  surface radiat ion on Nusselt  number  

In the preceding section we have presented results for a square 
cavity and have given a brief comparison of the present results 
with the existing numerical and experimental correlations. A 
striking feature of this comparative analysis has been that 
experimental correlations in general tend to disagree with 
theoretical correlations, as pointed out here and in Bejan 
(1984). From a careful study of previous experimental works, 
one can see that in many of them, either the radiation contribu- 
tion has been disregarded altogether or some sort of a correc- 
tion has been introduced by a simple formula, such as 
tr(T4h - -  T ~ ) / ( 1 / e  h + 1/e¢ - -  1). Because the present geometry is 
an enclosure, there are multiple reflections all along its 
boundaries. Hence the parallel-plate formula above does not 
predict the radiation Nusselt number accurately. The 
magnitude of the errors depend on the particular combination 
of the radiative parameters, viz. the e's, T,, and NRc. This aspect 
will be discussed in more detail in sections 5.5 to 5.7. 

With this background, we present below results that eluci- 
date the effect of surface radiation on Nusselt number. We have 
chosen a Rayleigh number of 50,000 as the standard case, since 
it is known that at such a Rayleigh number the flow is in the 
boundary-layer regime. Figure 4 highlights the variation of the 
local-convection Nusselt number without and with radiation 
for eh = e¢ = 0.10 and e, = eb = 0.90. We have purposely chosen 
this combination because in experimental investigations of 
natural convection in cavities, the side walls are usually made 
of polished copper or aluminum and the top and bottom walls 
are made of asbestos, balsa wood, or some other suitable 
insulating material (Eckert and Carlson 1961). The Nusselt 
number distribution (Figure 4) clearly shows that surface radia- 
tion leads to a drop in the convective component, a phenome- 
non that will be referred to hereafter as the c o n v e c t i v e  d r o p .  
However, this reduction tends to be compensated for by radia- 
tive transfer between the hot and cold walls. Hence, the net 
effect of radiation can be to increase or decrease the overall 
heat transfer across the enclosure, depending upon the inter- 
play between the convection and the radiation. We will say 
more about this point a little later (section 5.5). Hence, surface 
radiation has a "dual"  role to play, and the superposition of 
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Figure 4 Local Nusselt number distribution without  and with 
radiation (low emissivity combination) 
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Figure 5 Local Nusselt number distribution without and with 
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convection and radiation, as done in previous studies, is in 
error. The error becomes more severe as radiation becomes 
more dominant, as in the case of high wall emissivities and 
higher NRc'S. Similar results are shown in Figure 5, but for a 
higher emissivity combination (e~ = e~ = et = eb = 0.9) at the 
same Rayleigh number of 50,000. It can be seen that the overall 
Nusselt number (the sum of the convective component with 
radiation and the radiative component) for this case is m o r e  

than that for a pure convection case. The mean radiation 
Nusselt number for this combination of fixed parameters, but 
with e~ as a variable, correlated as NuR = 0.48/~ '°9 with a 
correlation coefficient of 0.998 and a standard deviation of 
0.028. Figure 6 clearly shows that the modified radiation 
Nusselt number (NuR/e 1'09) varies quite strongly with position 
along the hot wall. The simpler formulae would assume a 
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Modified radiation Nusselt number distribution along hot 

uniform value of radiosity and give a mean radiation Nusselt 
number that is different from the presently calculated one. We 
reiterate our earlier statement that for higher wall emissivities 
and higher NRc'S, the error is more severe. We will elaborate 
on this point in section 5.6. One of the major conclusions to 
be drawn from the figures is that for the case of low e, the 
convection drop could be 6 to 7 percent even at moderate 
values of NRc'S like 1.5, but for the high emissivity case, 
although the convection drop could be less than this, the mean 
radiation Nusselt number can be 15 to 18 percent of the mean 
convection Nusselt number. Hence, even at normal tempera- 
ture levels and relatively low emissivities and NRc'S, the effect 
of surface radiation is to swing the overall Nusselt number up 
to 10 percent either way. This clearly attempts to remove the 
haziness that shrouds the discrepancies between numerical and 
experimental correlations. Minor effects like three-dimension- 
ality and nonuniform temperature of the side walls can also 
play a role in causing the aforementioned discrepancy (Asako 
and Nakamura 1982). However, we use a very specific example 
in section 5.8 to show that surface radiation is the major reason 
for the discrepancy. 

5.3. Temperature and radiosi ty d ist r ibut ion 

To gain further physical insight into the problem, we now look 
at the temperature and radiosity profiles. Figures 7 and 8 
highlight the variation of top and bottom surface-temperature 
profiles, respectively, for the low and high emissivity cases. It  
is clear, firstly, that the surface radiation has not really affected 
the symmetry of the profile very much. Secondly, the top wall is 
affected more by radiation than the bottom wall. The top wall 
registers a general increase in temperature values as a result of 
radiation, as opposed to the bottom wall, which registers a 
slight decrease in temperature values near the cold wall region, 
i.e., towards the right end of the enclosure. Figure 9 shows the 
midplane temperatures for the two cases of low and high 
emissivities as opposed to the case for pure convection. These 
results clearly show that radiation equilibriates the temperature 
in the enclosure and hence the drop in convective Nusselt 
number takes place as expected. Figures 10 and 11 highlight 
the variation of nondimensional radiosities along the side walls 
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Figure 7 Nondimensional temperature distribution along the adia- 
batic walls of the enclosure (low emissivity combination) 
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Figure 8 Nondimensional temperature distribution along the adia- 
batic walls of the enclosure (high emissivity combination) 
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Figure 10 Nondimensional radiosity distribution along the adiaba- 
tic walls (low emissivity combination) 

and the top and bottom walls, respectively. The similarity 
between the temperature and radiosity profiles is indeed strik- 
ing. More importantly, the radiosity distribution of the side 
walls highlights certain subtle points. Mere isothermality of a 
wall does not ensure that the radiosities are uniform along the 
wall. Also, unlike gas radiation, surface radiation does not affect 
the symmetry of the temperature about a vertical midplan¢ 
(Lauriat 1991; Yang and Lloyd 1985). 

5.4. The effect o f  Rayleigh number on 
convective drop 

Table 3 sums up the effect of radiation for two representative 
Rayleigh numbers of 50,000 and 75,000, with the other param- 
eters fixed at values corresponding to those in previous figures. 
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and high emissivity combination) 
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Figure 11 Nondimensional radiosity distribution along the side 
walls (low emissivity combination) 

Table 3 Effect of radiation for Ra numbers of 50,000 and 75,000 

N ' ~ f  ~ u f  " ~ f  
(Berkovsky & (with radiation (Eckert & 

Ra Polevikov) present work) Carlson) 

50,000 3.46 2.96 3.05 
75,000 3.89 3.42 3.46 
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However, the emissivity of the side walls has been chosen as 
0.1, corresponding to the value actually used in Eckert and 
Carlson's work. Table 3 compares the convective Nusselt 
number obtained by the use of the pure convection correlation 
of Berkovsky and Polevikov (1977), the experiment-based cor- 
relation of Eckert and Carlson (1961), and the convection 
Nusselt number obtained in the present study taking into 
account the presence of radiation. The agreement between the 
present values and Eckert's values, both of which are 
much smaller than the Berkovsky and Polevikov calculation, 
vindicates our earlier statement about the "dual" nature of 
radiation. 

5.5. Effect of  emissivity on the heat transfer 
characteristics of  the cavity 

For a parametric study of the effect of emissivity, we have 
chosen Ra = 50,000 and have computed results for five emis- 
sivities between 0.10 and 0.95 (Figure 12). It is evident that 
the convective drop decreases monotonically with emissivity, 
whereas the radiation Nusselt number increases monotonically 
and the two curves intersect each other at eh = 0.229. At this 
emissivity, radiation is as if absent, since its "dual" effects cancel 
each other. Also the simpler formulae such as the parallel-plate 
formula give radiation Nusselt numbers that are quite different 
from those obtained by rigorous calculations. The three- 
element enclosure model gives results that are not much 
different from the presently calculated result (in a three-element 
enclosure model, each side wall is assumed as one element and 
the top and bottom wall together are assumed as one element). 
However, we should mention that none of the above-mentioned 
simple formulae for the radiative heat transfer take into account 
the effect of convection, and hence they cannot predict the 
convective drop. Having established that radiation brings down 
the convection component, we can infer that all the simpler 
formulae overpredict the Nu o. 

5.6. The effect of  radiation conduct ion interaction 
parameter on the heat transfer characteristics of  the 
cavity 

For a parametric study of the effect of NRc, we have chosen 
the same set of fixed parameters, and NRc has been varied from 
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Figure 12 Effect of emissivity on the heat transfer characteristics 
of the cavity 
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Figure 13 Effect of the radiation conduction interaction parameter 
on the heat transfer characteristics of the cavity 

0.5 to 4.5. Figure 13 shows the variation of both the convective 
drop and the radiation Nusselt number with Nac. It can be 
seen that at around NRc = 4.5, the two effects cancel each other 
and radiation is as if absent. For the case of low Nac'S, the 
convective drop is much higher compared to the radiation 
Nusselt number, hence, Nuo is less with radiation than in the 
pure convection case for this set of fixed parameters, as shown 
in Figure 13. 

5. 7. The effect of  temperature ratio on the heat 
transfer characteristics of  the cavity 

To probe into the effect of T, on the heat transfer characteristics 
of the enclosure, the temperature ratio has been varied from 
0.7 to 0.98 while keeping the other parameters fixed at values 
indicated in Figure 14. The case corresponds to the low 
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emissivity combination. Both the convective drop and the mean 
radiation Nusselt number come down with increasing T,  but 
the convective drop for this particular combination of other 
parameters is much higher compared to the radiation Nusselt 
number. Hence the overall Nusselt number for this case is less 
than that for a pure convection case. 

5.8. General  c o m m e n t s  

With these results in mind, a closer look into the existing 
correlations is indeed revealing. Let us take the case of Eckert 
and Carlson (1961). An MZ interferometer has been used to 
evaluate the heat transfer. It is known that interferometry gives 
only convective components. The fact that Eckert and Carl- 
son's correlation runs 10 to 15 percent below other numerical 
correlations can be attributed to their measurement of only 
convective heat transfer, coupled with their neglect of surface 
radiation by numerical correlations. The cavity used in their 
work was 16 inches deep, with a maximum spacing of about 
1.5 inches, with such a high width/spacing ratio, the three- 
dimensionality effect is expectedly negligible. The emissivities 
applicable to their setup correspond to the low emissivity 
combination in the present study, and hence the convective 
drop is significantly above the radiation Nusselt number. 

Another very significant point emerges from the parametric 
analysis: the interaction between radiation and the free convec- 
tion is so highly nonlinear that one does not know a priori 
whether the effect of radiation is to increase or decrease the 
overall heat transfer, and if so by what amount, unless the 
radiosity equations are solved and the coupling between con- 
vection and radiation is taken care of. 

Concluding remarks 

In this paper, the results of a numerical investigation have been 
presented for free convection in a square cavity, with special 
emphasis on the effect of surface radiation. The calculations 
that include radiation are more realistic, since it is impossible 
in practice to have surfaces with emissivities equal to zero. 
Radiation has a "dual" effect of contributing to the overall heat 
transfer as well as decreasing the convective component itself. 
Simple formulae that account for radiation in an additive way 
are not adequate, since they lead to large discrepancies even at 

small emissivities. Finally, an earnest attempt has been made 
to explain the possible source of discrepancies between the 
various available numerical correlations and the experimental 
results. 

References 

Asako, Y. and Nakamura, H. 1982. Heat transfer across a parallelo- 
gram shaped enclosure. Bull. J.S.M.E. 25, 1412-1424 

Bejan, A. 1984. Convective Heat Transfer. Wiley, New York 
Berkovsky, B. M. and Polevikov, V. K. 1977. Numerical study of 

problems of high intensive free convection. In Turbulent Buoyant 
Flow and Convection, D. B. Spalding and N. Afghan (eds.), Volume 
2. Hemisphere, Washington, 443-445 

De Vahl Davis, G. and Jones, I. P. 1983. Natural convection in a square 
cavity. Int. J. Numer. Methods Fluids, 3, 227-248 

Eckert, E. R. G. and Carlson, W. O. 1961. Natural convection in an 
air layer. Int. J. Heat Mass Transfer, 2, 106-120 

Gebhart, B. et al. 1988. Buoyancy Induced Flows and Transport. 
Hemisphere, Washington 

Gosman, A. D. et al. 1969. Heat and Mass Transfer in Recirculating 
Flows. Academic Press, London 

Han, T. J. 1967. Numerical solutions for an isolated vortex in a slot 
and free convection across a square cavity. M.A.Sc Thesis, University 
of Toronto. Reported in Ostrach, S. 1972. Advances in Heat Transfer, 
J. P. Hartnett and H. Irving (eds.), Volume 8. Academic Press, 
London, 161-206 

Hoogendoorn, C. J. 1985. Experimental methods in natural convection. 
In Natural Convection, Fundamentals and Applications, S. Kakac, 
W. Aung, and R. Viskanta (eds.). Hemisphere, Washington, 381-400 

Hottel, H. C. and Sarofim, A. F. 1967. Radiative Heat Transfer. 
McGraw Hill, New York 

Landis, F. and Rubel, A. 1970. Discussion on Newell & Schmidt 1-1970]. 
A S M E  J. Heat Transfer, 92, 167-168 

Lauriat, G. 1991. The effects of radiation on natural convection. Int. 
Chem. Eng., 31, 693-700 

Newell, M. E. and Schmidt, F. W. 1970. Heat transfer in natural 
convection within rectangular enclosures. A S M E  J. Heat Transfer, 
92, 159-167 

Shembarkar, T. R., Gururaja, J., and Krishna Prasad, K. 1977. Prandtl 
number effects on steady state natural convection flow and heat 
transfer in a square cavity. Proc. 4th Natl. Heat and Mass Conf., 
Roorkee, India 

Yang, K. T. and Lloyd, J. R. 1985. Natural convection radiation 
interaction in enclosures. In Natural Convection, Fundamentals and 
Applications, S. Kakac, W. Aung, and R. Viskanta (eds.). Hemisphere, 
Washington, 381-400 

Int. J. Heat and Fluid Flow, Vol. 14, No. 3, September 1993 267 


